Dystrobrevin controls neurotransmitter release and muscle Ca(2+) transients by localizing BK channels in Caenorhabditis elegans.

نویسندگان

  • Bojun Chen
  • Ping Liu
  • Haiying Zhan
  • Zhao-Wen Wang
چکیده

Dystrobrevin is a major component of a dystrophin-associated protein complex. It is widely expressed in mammalian tissues, including the nervous system, in which it is localized to the presynaptic nerve terminal with unknown function. In a genetic screen for suppressors of a lethargic phenotype caused by a gain-of-function isoform of SLO-1 in Caenorhabditis elegans, we isolated multiple loss-of-function (lf) mutants of the dystrobrevin gene dyb-1.dyb-1(lf) phenocopied slo-1(lf), causing increased neurotransmitter release at the neuromuscular junction, increased frequency of Ca(2+) transients in body-wall muscle, and abnormal locomotion behavior. Neuron- and muscle-specific rescue experiments suggest that DYB-1 is required for SLO-1 function in both neurons and muscle cells. DYB-1 colocalized with SLO-1 at presynaptic sites in neurons and dense body regions in muscle cells, and dyb-1(lf) caused SLO-1 mislocalization in both types of cells without altering SLO-1 protein level. The neuronal phenotypes of dyb-1(lf) were partially rescued by mouse α-dystrobrevin-1. These observations revealed novel functions of the BK channel in regulating muscle Ca(2+) transients and of dystrobrevin in controlling neurotransmitter release and muscle Ca(2+) transients by localizing the BK channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurobiology of Disease Presynaptic Ca /Calmodulin-Dependent Protein Kinase II Modulates Neurotransmitter Release by Activating BK Channels at Caenorhabditis elegans Neuromuscular Junction

Although Ca 2 /calmodulin-dependent protein kinase II (CaMKII) is enriched at the presynaptic nerve terminal, its role in neurotransmitter release is poorly defined. We assessed the function of presynaptic CaMKII in neurotransmitter release and tested the hypothesis that BK channel is a mediator of presynaptic CaMKII function by analyzing miniature and evoked postsynaptic currents at the Caenor...

متن کامل

SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans

Slo2 channels are prominent K(+) channels in mammalian neurons but their physiological functions are not well understood. Here we investigate physiological functions and regulation of the Caenorhabditis elegans homologue SLO-2 in motor neurons through electrophysiological analyses of wild-type and mutant worms. We find that SLO-2 is the primary K(+) channel conducting delayed outward current in...

متن کامل

The Dystrophin Complex Controls BK Channel Localization and Muscle Activity in Caenorhabditis elegans

Genetic defects in the dystrophin-associated protein complex (DAPC) are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and co...

متن کامل

An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in Caenorhabditis elegans

The large conductance, voltage- and calcium-dependent potassium (BK) channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium chann...

متن کامل

Channels Studied with a Novel Image-based Method for Direct Intracellular Measurement of Ryanodine Receptor

Ca 2 1 sparks are highly localized cytosolic Ca 2 1 transients caused by a release of Ca 2 1 from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca 2 1 in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca 2 1 sparks activate large conductance Ca 2 1 -activated K 1 channels (BK channels) in the spark microdo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 48  شماره 

صفحات  -

تاریخ انتشار 2011